

International Journal of Engineering and Applied Sciences (IJEAS)

 ISSN: 2394-3661, Volume-6, Issue-6, June 2019

 47 www.ijeas.org

Abstract— Issues are the reasons for poor design. Previously

we assess the impact of smells on code quality and it indicates

their harmful impact on maintainability. In this paper we collect

previous detections on issue-proneness to construct a specialized

issue prediction model for code smell classes. Mainly focus on

the involvement of a measure the severity of the code smells by

adding it to the existing issue prediction model product based

process based metrics, and comparing the results of the new

model. The proposed model with the one of alternative approach

which impacts metrics about the previous data of code smells in

files. Identify that one proposed works usually better. However

we observed the complementarities between the set of issues and

smelly classes properly classified by the two models. On the

basis of this result we assess a smell aware combined issue

prediction model. We make obvious how such model classifies

issue-prone code components with the harmonic mean of

precision and recall.

Index Terms— issue, smelly classes, poor design, metrics,

severity

I. INTRODUCTION

In the real-world situation, software systems change every day

to be adapted to new requirements or to be fixed with regard

to discovered ISSUES. They require of gathering strict

deadlines does not always allow developers to manage the

difficulty of such changes in an effective way. Indeed, often

the development actions are performed in an disruptive

manner, and have the effect to corrode the original blueprint

of the system by introducing technical debts This incident is

extensively known as software aging Some researchers

deliberate the observable fact in terms of entropy while others

defined the supposed bad code smells (shortly “code smells”

or simply “smells”), i.e., recurring cases of poor blueprint

choices occurring as a outcome of aging, or when the software

is not properly designed from the beginning. Long or complex

classes (e.g.,Blob), poorly structured code (e.g., Spaghetti

Code), or long Message Chains used to develop a certain

feature are only few examples of code smells that can

probably affect a software system .

 In addition approaches for the automatic detection of code

smells in source code the research community committed a lot

of effort in studying the code smell lifecycle as well as in

given that evidence of the harmful effects of the presence of

design flaws on Non-functional attributes of the source code.

On the one hand, empirical studies have been conducted to

understand when and why code smells come out what their

evolution is and longevity in software projects, and to what

extent they are relevant for programmers. On the other hand, a

 S.Narasimhulu,Assistant Professor,Dept of CSE,S.V College

ofEngineering,Tirupati,AP,India,9550891430

CH.Lawrence Dheeraj,Assistant Professor,Dept of CSE,S.V College

ofEngineering,Tirupati,AP,India,9121074996

Dr.Madhu B.K,Professor,Deptof CSE, ,Vidya vikas Institute of

Engineering & Technology,Mysore,India,9742696669

number of studies showed the harmful effects of code smells

on software understand capability and maintainability

Recently, Khomh et al. and Palomba et al. Have also

empirically established that classes affected by design

problems are more level to contain issues in the future. Even

though this study showed the potential importance of code

smells in the context of issue prediction, these observations

have been only incompletely explored by the research

community. A prior work by Taba et al. defined the first issue

prediction model that includes code smell information. In

exacting, they defined three metrics, coined as antipattern

metrics, based on the history

Of code smells in files and able to quantify the average

number of antipatterns, the complexity of changes involving

antipatterns and their recurrence length. Then, a issue

prediction model exploiting antipattern measures in addition

structural metrics was devised and evaluated, showing that the

performances of issue prediction models can increase up to

12.5% when considering design flaws. In our beginning

study, we conjectured that taking into account the harshness

of a design problem affecting a source code element in a issue

prediction model can

1) We expand the empirical validation of the smell

intensity-including (from now on, simply intensity including)

issue prediction model by allowing for a set of 45 releases of

14 software projects. This allows to significantly increasing

the generalizability of the achieved outcome.

2) In addition evaluating the involvement of the intensity

index in the context of a structural-based issue prediction

model, we expand our study to consider three more baseline

models, all of them relying on process metrics. Particularly,

we tested the involvement of the intensity index in the Basic

Code Change Model devised by Hassan, the

programmer-based Model proposed by Ostrand et al., and the

Developer Changes Based Model defined by Di Nucci et al.

3) We execute an empirical comparison of the performances

achieved by our model and by the model suggested by Taba et

al.

4) We devise and discuss the results of a smell-aware issue

prediction model, built by combining product, process, and

smell-related information.

5) We provide a comprehensive duplication package

including all the raw data and operational data sets of our

study.

II. RELATED WORK

 Although the main contribution of this paper spans in the

field of issue prediction, the work is built upon previous

knowledge in the field of bad code smell detection and

management. For this reason, in this Section we provide an

overview of the related literature in the context of both issue

prediction and code smells

Code Smell Aware – Issue Prediction Model

S.Narasimhulu, CH.Lawrence Dheeraj, Dr.Madhu B.K

Code Smell Aware – Issue Prediction Model

 48 www.ijeas.org

III. A SPECIALIZED ISSUE PREDICTION MODEL FOR

SMELLY CLASSES

Previous work has proposed the use of structural quality

metrics to predict the issue-proneness of code com-ponents.

The underlying idea behind these prediction models is that

The presence of issues can be predicted by analyzing the

quality of source code. However, none of them take into

account the presence and the severity of well-known

indicators of design flaws, i.e., code smells, affecting the

Source code. In this paper, we explicitly consider this

information. Indeed, we believe that a more clear description

and characterization of the severity of design problems

affecting a source code instance can help a machine learner in

distinguishing those compo-nents having higher Probability

to be subject of issues in the future. To this aim, once the set of

code compo-nents affected by code smells have been

detected, we build a prediction model that, in addition to

relying on structural metrics, also includes the information

about the severity of design problems computed using the

intensity index defined by Arcelli Fontana et al.

Specifically, the index is computed by JCodeOdor1, a code

smell detector which relies on detection strategies ap-plied on

metrics. The tool is able to detect, filter and prioritize

instances of six types of code smells

God Class: A large class implementing different

responsibilities;

Data Class: A class whose only purpose is holding data;

Brain Method: A large method that implements more than one

function;

Shotgun Surgery: A class where every change trig-gers many

little changes to several other classes;

Dispersed Coupling: A class having too many relationships

with other classes;

Message Chains: A method containing a long chain of method

calls.

The intensity index is an estimation of the severity of a code

smell, and its value is defined as a real number in the range

[1,10]. In particular, given the set of classes composing the

software system that a developer wants to evaluate, JCode

Odor adopts the following two steps to compute the intensity

of code smells In the first step the tool aims at detecting code

smells in the system given as input, relying on the detection

strategies reported in Table 1. Each detection strategy is a

logical composition of pred-icates, and each predicate is

based on an operator that compares a metric with a threshold

Our detection strategies are similar to those defined by Lanza

and Marinescu, which adopted the metrics reported in Table 2

to detect the six code smells described above. More

specifically, Lanza and Marinescu observed that code smells

often exhibit

(i) low cohesion and high coupling, (ii) high complexity, and

(iii) extensive access to the data of foreign classes: for this

reason, our approach considers (i) cohesion (i.e., TCC) and

coupling (i.e., CC, CDISP, CINT, CM, FANOUT), (ii)

complexity (i.e., CYCLO, MaMCL, MAXNESTING,

MeMCL, NMCS, WMCNAMM, WOC), and (iii) data access

(i.e., ATFD and ATLD) metrics. Furthermore, the approach

also computes size-related metrics such as LOC,

LOCNAMM, NOAM, NOLV, NOMNAMM, and NOPA. To

ease the comprehension of the detection approach, Table 2

reports the full metric names and definitions, while Table 3

describes the rationale behind the use of each predicate of the

detection strategies. Moreover, in Table 4 we provide data on

the distribution of the metrics used for code smell detection on

the dataset exploited in this paper (more details on the systems

and their selection are provided in Section 4).

Following the detection rules, a code component is detected

as smelly if one of the logical propositions shown in Table 1 is

true, namely if the actual metrics of the code component

exceed the threshold values composing a detection strategy. It

is important to note that the thresholds used by the tool have

been experientially calibrated on 74 systems of the Qualitas

Corpus dataset and are derived from the sta-tistical

distribution of the metrics contained in the dataset . For

metrics representing ratios defined in the range [0,1] (e.g., the

Tight Class Cohesion), threshold values are fixed to 0.25,

0.33, 0.5, 0.66 and 0.75. For all other metrics, they are

associated to percentile values on the metric distribution. For

sake of completeness, we report in Table 5 all the threshold

values associated to each of the detected code smells. The

thresholds are also mapped by the tool onto a nominal value,

i.e., VERY-LOW, LOW, MEAN, HIGH, VERY-HIGH, to

ease their interpre-tation.

If a code component is detected as a code smell, the actual

value of a given metric used for the detection will exceed the

threshold value, and it will correspond to a percentile value on

the met-ric distribution placed between the threshold and the

maximum observed value of the metric in the system under

analysis. The placement of the actual metric value in that

range represents the “exceeding amount” of a metric with

respect to the defined Threshold.

. To compute z, i.e., the normalized value, the following

formula is applied:

 z = [x min(x) 10 (1)

 max(x)

min(x)

 Where min and max are the minimum and maxi-mum

values observed in the distribution. This step allows having

the “exceeding amount” of each metric in the same scale. To

have a unique value representing the intensity of the code

smell affecting the class, the mean of the normalized

“exceeding amounts” is computed.

International Journal of Engineering and Applied Sciences (IJEAS)

 ISSN: 2394-3661, Volume-6, Issue-6, June 2019

 49 www.ijeas.org

TABLE 2: Metrics used for Code Smells Detection
Short Name Long Name

ATFD Access To Foreign Data

ATLD Access To Local Data

CC Changing Classes

CDISP Coupling Dispersion

CINT Coupling Intensity

CM Changing Methods

CYCLO McCabe Cyclomatic Complexity

FANOUT

LOC Lines Of Code

LOCNAMM Lines of Code Without Accessor or

 Mutator Methods

MaMCL Maximum Message Chain Length

MAXNESTIN

G Maximum Nesting Level

MeMCL Mean Message Chain Length

NMCS Number of Message Chain Statements

NOAM Number Of Accessor Methods

NOLV Number Of Local Variables

NOMNAM

Number of Not Access or

Mutator

 Methods

NOPA Number Of Public Attributes

TCC Tight Class Cohesion

IV. PREDICTION MODEL CONSTRUCTION

To answer our research questions, we needed to instant-ate

the prediction model presented in Section 3 to define the basic

predictors, (ii) the code smell detection process, and (iii) the

machine learning technique to use for classifying issuegy

instances

A. basic predictors

To this aim, we firstly set up a issue prediction model

composed of structural predictors, and in particular the 20

quality metrics exploited by Jureczko et al. [30]. The model is

characterized by a mix of size metrics (e.g., Lines of Code),

coupling metrics (e.g., Coupling between Object Classes,

cohesion metrics (e.g., Lack of Co-hesion of Methods, and

complexity metrics (e.g., McCabe Complexity. In this case,

the choice of the baseline was guided by the will to investigate

whether the use of a single additional structural metric

representing the intensity of code smells is able to add useful

information in a prediction model already characterized by

structural predictors, as well as by the set of code metrics used

for the computation of the intensity index. It is important to

note that this model might be affected by multi-co linearity,

which occurs when two or more independent variables are

highly correlated and can be predicted one from the other.

Recent work,

B. Code Smell Prediction

The Bayesian technique proposed by Khomh et al. assigns a

probability that a certain class is affected by the God Class

code smell, while it has not been defined for other smell types.

For this reason, we relied on the detection performed by

JCodeOdor because

(i) It has been experientially validated demonstrating good

performances in detecting code smells

(ii) It detects all the code smells considered in the

EXPERIENTIAL study. Finally, it computes the value of the

intensity index on the detected code smells

V. INVESTIGATION OF THE RESULTS

In the following we discuss the results, aiming at pro-viding

an answer to our research questions. To avoid redundancies,

we discuss the first two research questions together.

A. The performances of the projected model

Before describing the results related to the addition of the

intensity index in the different prediction models considered,

it is worth reporting the output of the feature selection process

aimed at avoiding multi-collinearity by removing irrelevant

features from the structural model. In particular, for each

considered project we discovered a recurrent pattern in the

pairs of metrics highly corre-lated:

1) Weighted Method per Class (WMC) and Response

for a Class (RFC);

2) Coupling Between Objects (CBO) and Afferent

Cou-plings (CA);

3) Lack of Cohesion of Methods (LCOM) and Lack of

Cohesion of Methods 3 (LCOM3);

4) Maximum Cyclomatic Complexity (MAX(CC)) and

Average Cyclomatic Complexity (AVG(CC));

According to the results achieved using the vif func-tion , we

removed the RFC, CA, LCOM, and MAX(CC) metrics.

Therefore, the resulting structural model is composed of 16

metrics.

VI. THREATS TO VALIDITY

Threats to construct validity are related to the relationship

between theory and observation. Above all, we relied on

JCode Odor for detecting code smells.

The intensity index computed by the tool derives by a set of

code metrics characterizing cohesion, coupling, complexity,

size, and data access of classes. A first problem threatening

our observations might be the redundancy of such metrics. To

verify the validity of the intensity computation

VII. CONCLUSION AND FUTURE WORK

In this paper, we evaluated to what level the addition of the

potency key in existing state-of-the-art issue prediction

models is useful to increase the performances of the baseline

models. Specifically, we firstly set up four baseline prediction

models then, we compared the performances of such models

with and without the addition of the potency key, in order to

control the actual contribution of the severity of code smells.

Moreover, we also compared the models mentioned above

with the same baseline models.

 When compared with the models built using the antipattern

metrics, we observed that the models including the obtain an

accuracy up to 16% higher. More notably, we observed

interesting com-plementarities between the set of issuegy and

smelly classes correctly classified by the two different

configurations of models.

In the second step of our analyses, we quantified the actual

gain provided by the potency key with respect to the other

metrics composing the models, confirming the high predictive

power of the potency key over all the baseline models.

Based on these results, we built a smell-aware predic-tion

model which combines product, process, and smell-related

information. The performances of this new model outperform

the ones of all the other experimented mod-els, confirming

Code Smell Aware – Issue Prediction Model

 50 www.ijeas.org

once again the usefulness of considering code smells in issue

prediction.

The potency key helps selective issue-prone code elements

affected by code smells in issue

Prediction models based on product metrics, process metrics,

and a combination of the two. Our results also suggest that the

potency of code smells is helpful in all these cases, and cannot

be replaced by a simple indicator of the presence or absence

of a code smell. the practical applicability of the proposed

smell-aware issue prediction model.

As for future work, we firstly plan to further analyze how the

potency key impacts the performances of issue prediction

models, by performing a fine-grained analysis into the role of

each smell type independently on the pre-diction power.

Furthermore, since our study has focused on global issue

prediction, future effort will be devoted to the analysis of the

contribution of smell-related information in the context of

local-learning issue prediction models

REFERENCES

[1] Fabio Palomba Marco Zanoni,, Francesca Arcelli Fontana Andrea

De Lucia Rocco Oliveto Toward a Smell-aware Issue Prediction

Model-IEEE Transactions on software engineering vol 45 no.2

Feb,2019.

[2] W. Cunningham, “The WyCash portfolio management system,”

OOPS Messenger, vol. 4, no. 2, pp. 29–30, 1993.

[3] D. L. Parnas, “Software aging,” in Proceedings of the 16th

Inter-national Conference on Software Engineering, Sorrento, Italy,

May 16-21, 1994., 1994, pp. 279–287.
[4] W. Harrison, “An entropy-based measure of software complex-ity,”

IEEE Trans. Softw. Eng., vol. 18, no. 11, pp. 1025–1029, Nov.

1992.[Online].Available:http://dx.doi.org/10.1109/32.177371

[5] A. E. Hassan, “Predicting faults using the complexity of code

changes,” in Software Engineering, 2009. ICSE 2009. IEEE 31st

International Conference on, May 2009, pp. 78–88.

[6] M. Fowler, Refactoring: improving the design of existing code.
Addison-Wesley, 1999.

[7] F. A. Fontana, M. Zanoni, A. Marino, and M. V. Mantyla, “Code

smell detection: Towards a machine learning-based approach,” in

Software Maintenance (ICSM), 2013 29th IEEE International

Conference on, Sept 2013, pp. 396–399.

[8] G. Bavota, R. Oliveto, M. Gethers, D. Poshyvanyk, and A. De Lu-cia,

“Methodbook: Recommending move method refactorings via

relational topic models,” IEEE Transactions on Software

En-gineering, vol. 40, no. 7, pp. 671–694, July 2014.
[9] N. Moha, Y.-G. Guéhéneuc, L. Duchien, and A.-F. L. Meur, “Decor:

A method for the specification and detection of code and design
smells,” IEEE Transactions on Software Engineering, vol. 36, no. 1,
pp. 20–36, 2010.

[10] F. Palomba, A. Panichella, A. Zaidman, R. Oliveto, and A. De Lu-cia,

“A textual-based technique for smell detection,” in Proceed-ings of

the 24th International Conference on Program Comprehension (ICPC

2016). Austin, USA: IEEE, 2016, p. to appear.
[11] F. Palomba, G. Bavota, M. Di Penta, R. Oliveto, D. Poshyvanyk, and

A. De Lucia, “Mining version histories for detecting code smells,”
IEEE Transactions on Software Engineering, vol. 41, no. 5, pp.
462–489, May 2015.

[12] N. Tsantalis and A. Chatzigeorgiou, “Identification of move method

refactoring opportunities,” IEEE Transactions on Software

Engineering, vol. 35, no. 3, pp. 347–367, 2009.

[13] M. Tufano, F. Palomba, G. Bavota, R. Oliveto, M. Di Penta, A. De

Lucia, and D. Poshyvanyk, “When and why your code starts to smell

bad (and whether the smells go away),” IEEE Transactions on

Software Engineering, p. to appear., 2017.
[14] R. Arcoverde, A. Garcia, and E. Figueiredo, “Understanding the

longevity of code smells: preliminary results of an explanatory

survey,” in Proceedings of the International Workshop on Refactoring

Tools. ACM, 2011, pp. 33–36.

[15] A. Chatzigeorgiou and A. Manakos, “Investigating the evolution of

bad smells in object-oriented code,” in Int’l Conf. Quality of

Information and Communications Technology (QUATIC). IEEE,

2010, pp. 106–115.

[16] A. Lozano, M. Wermelinger, and B. Nuseibeh, “Assessing the impact

of bad smells using historical information,” in Proceedings of the

International workshop on Principles of Software Evolution (IWPSE).

ACM, 2007, pp. 31–34.

[17] D. Ratiu, S. Ducasse, T. Gîrba, and R. Marinescu, “Using history

information to improve design flaws detection,” in Proceedings of the

European Conference on Software Maintenance and Reengineering

(CSMR). IEEE, 2004, pp. 223–232.
[18] F. Palomba, G. Bavota, M. Di Penta, R. Oliveto, and A. De Lucia,

“Do they really smell bad? a study on developers’ perception of bad
code smells,” in Proceedings of the International Conference on
Software Maintenance and Evolution (ICSME). IEEE, 2014, pp.
101–110.

[19] A. F. Yamashita and L. Moonen, “Do developers care about code

smells? an exploratory survey,” in Proceedings of the Working

Conference on Reverse Engineering (WCRE). IEEE, 2013, pp. 242–

251.
[20] M. Abbes, F. Khomh, Y.-G. Guéhéneuc, and G. Antoniol, “An

EXPERIENTIAL study of the impact of two antipatterns, Blob and

Spaghetti Code, on program comprehension,” in 15th European

Conference on Software Maintenance and Reengineering, CSMR

2011, 1-4 March 2011, Oldenburg, Germany. IEEE Computer

Society, 2011, pp. 181–190.
[21] D. I. K. Sjøberg, A. F. Yamashita, B. C. D. Anda, A. Mockus, and

T. Dybå, “Quantifying the effect of code smells on maintenance

effort,” IEEE Trans. Software Eng., vol. 39, no. 8, pp. 1144–1156,

2013.
[22] A. F. Yamashita and L. Moonen, “Do code smells reflect impor-tant

maintainability aspects?” in Proceedings of the International

Conference on Software Maintenance (ICSM). IEEE, 2012, pp. 306–

315.
[23] A. Yamashita and L. Moonen, “Exploring the impact of inter-smell

relations on software maintainability: An EXPERIENTIAL study,” in

Proceedings of the International Conference on Software

Engineer-ing (ICSE). IEEE, 2013, pp. 682–691.

[24] F. Khomh, M. Di Penta, and Y.-G. Gueheneuc, “An exploratory study

of the impact of code smells on software change-proneness,” in

Proceedings of the Working Conference on Reverse Engineering

(WCRE). IEEE, 2009, pp. 75–84.
[25] F. Khomh, M. Di Penta, Y.-G. Guéhéneuc, and G. Antoniol, “An

exploratory study of the impact of antipatterns on class change-and
fault-proneness,” EXPERIENTIAL Software Engineering, vol. 17,
no. 3, pp. 243–275, 2012.

S.Narasimhulu,Assistant Professor, DeDept of CSE, Sri

Venkateswara college of Engineering, Tirupati, AP, India. His Interesting area

is Software Engineering, Software Testing

 CH.Lawrence Dheeraj, Assistant Pr Professor, Dept of CSE,

Sri Venkateswara college of Engineering, Tirupati, AP, India. Hi His

Interesting area is Software Engineering, Software Testing

 Dr.Madhu B.K, Professor, Dept of CSE, Vidya Vikas

Institute of Engineering and Technology, M Mysore, India. Member in ACM,

ISTE, CSI. His Research area In Software Engineering and Software T

Testing.

http://dx.doi.org/10.1109/32.177371

