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Abstract— Issues are the reasons for poor design. Previously 

we assess the impact of smells on code quality and it indicates 

their harmful impact on maintainability. In this paper we collect 

previous detections on issue-proneness to construct a specialized 

issue prediction model for code smell classes. Mainly focus on 

the involvement of a measure the severity of the code smells by 

adding it to the existing issue prediction model product based 

process based metrics, and comparing the results of the new 

model. The proposed model with the one of alternative approach 

which impacts metrics about the previous data of code smells in 

files. Identify that one proposed works usually better. However 

we observed the complementarities between the set of issues and 

smelly classes properly classified by the two models. On the 

basis of this result we assess a smell aware combined issue 

prediction model. We make obvious how such model classifies 

issue-prone code components with the harmonic mean of 

precision and recall. 

 
Index Terms— issue, smelly classes, poor design, metrics, 

severity 

I. INTRODUCTION 

In the real-world situation, software systems change every day 

to be adapted to new requirements or to be fixed with regard 

to discovered ISSUES. They require of gathering strict 

deadlines does not always allow developers to manage the 

difficulty of such changes in an effective way. Indeed, often 

the development actions are performed in an disruptive 

manner, and have the effect to corrode the original blueprint 

of the system by introducing technical debts  This incident is 

extensively known as software aging  Some researchers 

deliberate the observable fact in terms of entropy while others 

defined the supposed bad code smells (shortly “code smells” 

or simply “smells”), i.e., recurring cases of poor blueprint 

choices occurring as a outcome of aging, or when the software 

is not properly designed from the beginning. Long or complex 

classes (e.g.,Blob), poorly structured code (e.g., Spaghetti 

Code), or long Message Chains used to develop a certain 

feature are only few examples of code smells that can 

probably affect a software system . 

 

 In addition approaches for the automatic detection of code 

smells in source code the research community committed a lot 

of effort in studying the code smell lifecycle as well as in 

given that evidence of the harmful effects of the presence of 

design flaws on Non-functional attributes of the source code. 

On the one hand, empirical studies have been conducted to 

understand when and why code smells come out what their 

evolution is and longevity in software projects, and to what 

extent they are relevant for programmers. On the other hand, a  
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number of studies showed the harmful effects of code smells  

on software understand capability and maintainability 

Recently, Khomh et al. and Palomba et al.  Have also 

empirically established that classes affected by design 

problems are more level to contain issues in the future. Even 

though this study showed the potential importance of code 

smells in the context of issue prediction, these observations 

have been only incompletely explored by the research 

community. A prior work by Taba et al. defined the first issue 

prediction model that includes code smell information. In 

exacting, they defined three metrics, coined as antipattern 

metrics, based on the history 

 

Of code smells in files and able to quantify the average 

number of antipatterns, the complexity of changes involving 

antipatterns and their recurrence length. Then, a issue 

prediction model exploiting antipattern measures in addition 

structural metrics was devised and evaluated, showing that the 

performances of issue prediction models can increase up to 

12.5% when considering design flaws. In our beginning 

study, we conjectured that taking into account the harshness 

of a design problem affecting a source code element in a issue 

prediction model can 

 

1) We expand the empirical validation of the smell 

intensity-including (from now on, simply intensity including) 

issue prediction model by allowing for a set of 45 releases of 

14 software projects. This allows to significantly increasing 

the generalizability of the achieved outcome. 

2) In addition evaluating the involvement of the intensity 

index in the context of a structural-based issue prediction 

model, we expand our study to consider three more baseline 

models, all of them relying on process metrics. Particularly, 

we tested the involvement of the intensity index in the Basic 

Code Change Model devised by Hassan, the 

programmer-based Model proposed by Ostrand et al., and the 

Developer Changes Based Model defined by Di Nucci et al.  

3) We execute an empirical comparison of the performances 

achieved by our model and by the model suggested by Taba et 

al. 

4) We devise and discuss the results of a smell-aware issue 

prediction model, built by combining product, process, and 

smell-related information. 

5) We provide a comprehensive duplication package 

including all the raw data and operational data sets of our 

study. 

II. RELATED WORK 

       Although the main contribution of this paper spans in the 

field of issue prediction, the work is built upon previous 

knowledge in the field of bad code smell detection and 

management. For this reason, in this Section we provide an 

overview of the related literature in the context of both issue 

prediction and code smells 
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III. A SPECIALIZED ISSUE PREDICTION MODEL FOR 

SMELLY CLASSES 

 

Previous work has proposed the use of structural quality 

metrics to predict the issue-proneness of code com-ponents. 

The underlying idea behind these prediction models is that  

The presence of issues can be predicted by analyzing the 

quality of source code. However, none of them take into 

account the presence and the severity of well-known 

indicators of design flaws, i.e., code smells, affecting the 

Source code. In this paper, we explicitly consider this 

information. Indeed, we believe that a more clear description 

and characterization of the severity of design problems 

affecting a source code instance can help a machine learner in 

distinguishing those compo-nents having higher Probability 

to be subject of issues in the future. To this aim, once the set of 

code compo-nents affected by code smells have been 

detected, we build a prediction model that, in addition to 

relying on structural metrics, also includes the information 

about the severity of design problems computed using the 

intensity index defined by Arcelli Fontana et al. 

 

Specifically, the index is computed by JCodeOdor1, a code 

smell detector which relies on detection strategies ap-plied on 

metrics. The tool is able to detect, filter  and prioritize  

instances of six types of code smells  

 

God Class: A large class implementing different 

responsibilities; 

 

Data Class: A class whose only purpose is holding data; 

 

Brain Method: A large method that implements more than one 

function; 

 

Shotgun Surgery: A class where every change trig-gers many 

little changes to several other classes; 

 

Dispersed Coupling: A class having too many relationships 

with other classes; 

 

Message Chains: A method containing a long chain of method 

calls. 

 

The intensity index is an estimation of the severity of a code 

smell, and its value is defined as a real number in the range 

[1,10]. In particular, given the set of classes composing the 

software system that a developer wants to evaluate, JCode 

Odor adopts the following two steps to compute the intensity 

of code smells In the first step the tool aims at detecting code 

smells in the system given as input, relying on the detection 

strategies reported in Table 1. Each detection strategy is a 

logical composition of pred-icates, and each predicate is 

based on an operator that compares a metric with a threshold 

Our detection strategies are similar to those defined by Lanza 

and Marinescu, which adopted the metrics reported in Table 2 

to detect the six code smells described above. More 

specifically, Lanza and Marinescu  observed that code smells 

often exhibit  

 

(i) low cohesion and high coupling, (ii) high complexity, and 

(iii) extensive access to the data of foreign classes: for this 

reason, our approach considers (i) cohesion (i.e., TCC) and 

coupling (i.e., CC, CDISP, CINT, CM, FANOUT), (ii) 

complexity (i.e., CYCLO, MaMCL, MAXNESTING, 

MeMCL, NMCS, WMCNAMM, WOC), and (iii) data access 

(i.e., ATFD and ATLD) metrics. Furthermore, the approach 

also computes size-related metrics such as LOC, 

LOCNAMM, NOAM, NOLV, NOMNAMM, and NOPA. To 

ease the comprehension of the detection approach, Table 2 

reports the full metric names and definitions, while Table 3 

describes the rationale behind the use of each predicate of the 

detection strategies. Moreover, in Table 4 we provide data on 

the distribution of the metrics used for code smell detection on 

the dataset exploited in this paper (more details on the systems 

and their selection are provided in Section 4). 

 

Following the detection rules, a code component is detected 

as smelly if one of the logical propositions shown in Table 1 is 

true, namely if the actual metrics of the code component 

exceed the threshold values composing a detection strategy. It 

is important to note that the thresholds used by the tool have 

been experientially calibrated on 74 systems of the Qualitas 

Corpus dataset  and are derived from the sta-tistical 

distribution of the metrics contained in the dataset . For 

metrics representing ratios defined in the range [0,1] (e.g., the 

Tight Class Cohesion), threshold values are fixed to 0.25, 

0.33, 0.5, 0.66 and 0.75. For all other metrics, they are 

associated to percentile values on the metric distribution. For 

sake of completeness, we report in Table 5 all the threshold 

values associated to each of the detected code smells. The 

thresholds are also mapped by the tool onto a nominal value, 

i.e., VERY-LOW, LOW, MEAN, HIGH, VERY-HIGH, to 

ease their interpre-tation. 

 

If a code component is detected as a code smell, the actual 

value of a given metric used for the detection will exceed the 

threshold value, and it will correspond to a percentile value on 

the met-ric distribution placed between the threshold and the 

maximum observed value of the metric in the system under 

analysis. The placement of the actual metric value in that 

range represents the “exceeding amount” of a metric with 

respect to the defined  Threshold. 

. To compute z, i.e., the normalized value, the following 

formula is applied: 

 

 

 z = [     x  min(x) 10   (1) 

 max(x) 

 

min(x)   

     

 

     Where min and max are the minimum and maxi-mum 

values observed in the distribution. This step allows having 

the “exceeding amount” of each metric in the same scale. To 

have a unique value representing the intensity of the code 

smell affecting the class, the mean of the normalized 

“exceeding amounts” is computed. 
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TABLE 2: Metrics used for Code Smells Detection 
Short Name Long Name 

ATFD Access To Foreign Data 

ATLD Access To Local Data 

CC Changing Classes 

CDISP Coupling Dispersion 

CINT Coupling Intensity 

CM Changing Methods 

CYCLO McCabe Cyclomatic Complexity 

FANOUT  

LOC Lines Of Code 

LOCNAMM Lines of Code Without Accessor or 

 Mutator Methods 

MaMCL Maximum Message Chain Length 

MAXNESTIN

G Maximum Nesting Level 

MeMCL Mean Message Chain Length 

NMCS Number of Message Chain Statements 

NOAM Number Of Accessor Methods 

NOLV Number Of Local Variables 

NOMNAM      

Number of Not Access or  

Mutator 

 Methods 

NOPA Number Of Public Attributes 

TCC Tight Class Cohesion 

IV. PREDICTION MODEL CONSTRUCTION 

To answer our research questions, we needed to instant-ate 

the prediction model presented in Section 3 to define the basic 

predictors, (ii) the code smell detection process, and (iii) the 

machine learning technique to use for classifying issuegy 

instances 

A.  basic predictors 

To this aim, we firstly set up a issue prediction model 

composed of structural predictors, and in particular the 20 

quality metrics exploited by Jureczko et al. [30]. The model is 

characterized by a mix of size metrics (e.g., Lines of Code), 

coupling metrics (e.g., Coupling between Object Classes, 

cohesion metrics (e.g., Lack of Co-hesion of  Methods, and 

complexity metrics (e.g., McCabe Complexity. In this case, 

the choice of the baseline was guided by the will to investigate 

whether the use of a single additional structural metric 

representing the intensity of code smells is able to add useful 

information in a prediction model already characterized by 

structural predictors, as well as by the set of code metrics used 

for the computation of the intensity index. It is important to 

note that this model might be affected by multi-co linearity, 

which occurs when two or more independent variables are 

highly correlated and can be predicted one from the other. 

Recent work, 

B. Code Smell Prediction 

The Bayesian technique proposed by Khomh et al.  assigns a 

probability that a certain class is affected by the God Class 

code smell, while it has not been defined for other smell types. 

For this reason, we relied on the detection performed by 

JCodeOdor because  

 

(i) It has been experientially validated demonstrating good 

performances in detecting code smells  

(ii) It detects all the code smells considered in the 

EXPERIENTIAL study. Finally, it computes the value of the 

intensity index on the detected code smells 

V.  INVESTIGATION OF THE RESULTS 

In the following we discuss the results, aiming at pro-viding 

an answer to our research questions. To avoid redundancies, 

we discuss the first two research questions together. 

A.  The performances of the projected model  

Before describing the results related to the addition of the 

intensity index in the different prediction models considered, 

it is worth reporting the output of the feature selection process 

aimed at avoiding multi-collinearity by removing irrelevant 

features from the structural model. In particular, for each 

considered project we discovered a recurrent pattern in the 

pairs of metrics highly corre-lated: 

1) Weighted Method per Class (WMC) and Response 

for a Class (RFC); 

2) Coupling Between Objects (CBO) and Afferent 

Cou-plings (CA); 

3) Lack of Cohesion of Methods (LCOM) and Lack of 

Cohesion of Methods 3 (LCOM3); 

4) Maximum Cyclomatic Complexity (MAX(CC)) and 

Average Cyclomatic Complexity (AVG(CC)); 

 

According to the results achieved using the vif func-tion , we 

removed the RFC, CA, LCOM, and MAX(CC) metrics. 

Therefore, the resulting structural model is composed of 16 

metrics. 

VI. THREATS TO VALIDITY 

Threats to construct validity are related to the relationship 

between theory and observation. Above all, we relied on 

JCode Odor  for detecting code smells. 

The intensity index computed by the tool derives by a set of 

code metrics characterizing cohesion, coupling, complexity, 

size, and data access of classes. A first problem threatening 

our observations might be the redundancy of such metrics. To 

verify the validity of the intensity computation 

VII. CONCLUSION AND FUTURE WORK 

In this paper, we evaluated to what level the addition of the 

potency key in existing state-of-the-art issue prediction 

models is useful to increase the performances of the baseline 

models. Specifically, we firstly set up four baseline prediction 

models then, we compared the performances of such models 

with and without the addition of the potency key, in order to 

control the actual contribution of the severity of code smells. 

Moreover, we also compared the models mentioned above 

with the same baseline models. 

 When compared with the models built using the antipattern 

metrics, we observed that the models including the obtain an 

accuracy up to 16% higher. More notably, we observed 

interesting com-plementarities between the set of issuegy and 

smelly classes correctly classified by the two different 

configurations of models. 

In the second step of our analyses, we quantified the actual 

gain provided by the potency key with respect to the other 

metrics composing the models, confirming the high predictive 

power of the potency key over all the baseline models.  

Based on these results, we built a smell-aware predic-tion 

model which combines product, process, and smell-related 

information. The performances of this new model outperform 

the ones of all the other experimented mod-els, confirming 
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once again the usefulness of considering code smells in issue 

prediction. 

The potency key helps selective issue-prone code elements 

affected by code smells in issue 

Prediction models based on product metrics, process metrics, 

and a combination of the two. Our results also suggest that the 

potency of code smells is helpful in all these cases, and cannot 

be replaced by a simple indicator of the presence or absence 

of a code smell. the practical applicability of the proposed 

smell-aware issue prediction model. 

As for future work, we firstly plan to further analyze how the 

potency key impacts the performances of issue prediction 

models, by performing a fine-grained analysis into the role of 

each smell type independently on the pre-diction power. 

Furthermore, since our study has focused on global issue 

prediction, future effort will be devoted to the analysis of the 

contribution of smell-related information in the context of 

local-learning issue prediction models 
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